
Carnegie Mellon University
Software Engineering Institute

Discovering DISCOVER

Scott R. Tilley

October 1997

TR
TECHNICAL REPORT

CMU/SEI-97-TR-012
ESC-TR-97-012

£f IC QUALITY mCPEÜTED S

Approved for public release;
Distribution Unlimited

Carnegie Mellon University does not discriminate and Carnegie Mellon University is required not to discriminate in admission, employment, or administra-
tion of its programs or activities on the basis of race, color, national origin, sex or handicap in violation of Title VI of the Civil Rights Act of 1964, Title IX of
the Educational Amendments of 1972 and Section 504 of the Rehabilitation Act of 1973 or other federal, state, or local laws or executive orders.

In addition, Carnegie Mellon University does not discriminate in admission, employment or administration of its programs on the basis of religion, creed,
ancestry, belief, age, veteran status, sexual orientation or in violation of federal, state, or local laws or executive orders. However, in the judgment of the
Carnegie Mellon Human Relations Commission, the Department of Defense policy of, "Don't ask, don't tell, don't pursue," excludes openly gay, lesbian and
bisexual students from receiving ROTC scholarships or serving in the military. Nevertheless, all ROTC classes at Carnegie Mellon University are available to
all students.

Inquiries concerning application of these statements should be directed to the Provost, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA
15213, telephone (412) 268-6684 or the Vice President for Enrollment, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, telephone
(412)268-2056.

Obtain general information about Carnegie Mellon University by calling (412) 268-2000.

Technical Report
CMU/SEI-97-TR-012

ESC-TR-97-012
October 1997

Discovering DISCOVER

Scott R. Tilley

Reengineering Center
Product Line Systems

Unlimited distribution subject to the copyright.

Software Engineering Institute
Carnegie Mellon University

DUG Q^MJIXZ ESEPEiBÄD & Pittsburgh, PA 15213

This report was prepared for the

SEI Joint Program Office
HQ ESC/AXS
5 Eglin Street
Hanscom AFB, MA 01731-2116.

The ideas and findings in this report should not be construed as an official DoD position. It is published in the
interest of scientific and technical information exchange.

FOR THE COMMANDER

JayAlonis. Lt Col, USAF
SEI Joint Program Office

This work is sponsored by the U.S. Department of Defense.

Copyright © 1997 by Carnegie Mellon University.

Permission to reproduce this document and to prepare derivative works from this document for internal use is
granted, provided the copyright and "No Warranty" statements are included with all reproductions and derivative

works.

Requests for permission to reproduce this document or to prepare derivative works of this document for external
and commercial use should be addressed to the SEI Licensing Agent.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL
IS FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRAN-
TIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT
LIMITED TO WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR
RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES
NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT,
TRADEMARK, OR COPYRIGHT INFRINGEMENT.

This work was created in the performance of Federal Government Contract Number F19628-95-C-0O03 with
Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research
and development center. The Government of the United States has a royalty-free government-purpose license to
use, duplicate, or disclose the work, in whole or in part and in any manner, and to have or permit others to do so,
for government purposes pursuant to the copyright license under the clause at 52.227-7013.

This document is available through Asset Source for Software Engineering Technology (ASSET): 1350 Earl L.
Core Road; PO Box 3305; Morgantown, West Virginia 26505 / Phone:—(304) 284-9000 / FAX—(304) 284-
9001 World Wide Web: http://www.asset.com / e-mail: sei@asset.com

Copies of this document are available through the National Technical Information Service (NTIS). For informa-
tion on ordering, please contact NTIS directly: National Technical Information Service, U.S. Department of

Commerce, Springfield, VA 22161. Phone—(703) 487-4600.

This document is also available through the Defense Technical Information Center (DTIC). DTIC provides access
to and transfer of scientific and technical information for DoD personnel, DoD contractors and potential contrac-
tors, and other U.S. Government agency personnel and their contractors. To obtain a copy, please contact DTIC
directly: Defense Technical Information Center / Attn: BRR / 8725 John J. Kingman Road / Suite 0944 / Ft. Bel-
voir, VA 22060-6218 / Phone—(703) 767-8274 or toll-free in the U.S.—1-800 225-3842.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder. B

Table of Contents

1 Introduction

2 DISCOVER 3

2.1 DEVELOP/set • 3

3
2.1.1 PROGRAM/sw....

2.1.2 DESIGN/sw 3

4
2.1.3 DEBUG/sw

4
2.1.4 DEBUG+/SW

 4
2.2 CM/set

2.3 REENGINEER/set 4

2.4 DOC/set

2.5 ADMIN/set 5

3 Canonical Activity Support 7

3.1 Data Gathering ,

3.2 Knowledge Organization 7

3.3 Information Exploration 8

9 3.3.1 Navigation

3.3.2 Analysis

3.3.3 Presentation 12

4 Quality Attributes 15

4.1 Applicability 15

4.2 Extensibility 15

4.3 Miscellaneous ,u

5 Discussion

5 .1 Implications for Users 17

CMU/SEI-97-TR-012

5.2 Implications for Researchers and Tool Developers 18

5.3 Implications for the Program Understanding Framework 19

5.4 Acknowledgements 20

References 21

CMU/SEI-97-TR-012

List of Figures

Figure 1: DISCOVER Browser 1

CMU/SEI-97-TR-012

iv CMU/SEI-97-TR-012

Discovering DISCOVER

Abstract: This report describes investigations into DISCOVER, a modern
software development and maintenance environment. The study is guided by
a framework for classifying program understanding tools that is based on a
description of the canonical activities that are characteristic of the reverse
engineering process. Implications of this work for advanced practitioners,
researchers and tool developers, and the framework itself are discussed.

1 Introduction
This report describes the use of a conceptual framework for the classification of reverse
engineering tools and techniques (collectively known as support mechanisms) that aid
program understanding [Tilley 96a]. The framework is based on a description of the
canonical activities characteristic of the reverse engineering process. A descriptive model
provides a means to classify different approaches to reverse engineering through a
common frame of reference. It is important to note that the framework enables a
comparison between different support mechanisms, not an evaluation of individual support

mechanisms.

The framework was developed in three steps. The first step was an investigation into the
underlying cognitive aspects of program understanding. The second step was the
identification of the canonical activities that make up any reverse engineering process.
These activities are data gathering, knowledge organization, and information exploration.
The third step was a categorization of reverse engineering support mechanisms along
several dimensions. Categories include domain applicability, task support, and toolkit

extensibility.

This paper focuses primarily on the second and third parts of the framework for studying the
capabilities of DISCOVER, a modern software development and maintenance environment.
The first part of the framework, cognitive aspects, was not used extensively in the study
because DISCOVER is primarily a tool for aiding program understanding, not a new

comprehension model.

DISCOVER was chosen for this independent study for several reasons. It is one of the most
advanced commercial environments currently on the market. Due to its pricing structure, it
is unlikely that many researchers would have the opportunity to explore DISCOVER in an
academic setting. It is a powerful environment that is representative of a new generation of
tools that aid program understanding. As such, it provided an excellent opportunity to look

CMU/SEI-97-TR-012

at the state of the practice in program understanding tools. It also provided an opportunity to
exercise and evolve the program understanding framework itself.

The next section provides a brief overview of DISCOVER. Section 3 describes the canonical
reverse engineering activities and how DISCOVER provides support for them. Section 4
explores some of the quality attributes of DISCOVER, such as scalability and extensibility.
Finally, Section 5 discusses the implications of this study for users, researchers and tool
developers, and the program understanding framework itself.

CMU/SEI-97-TR-012

2 DISCOVER
DISCOVER™ is a "Development Information System" from Software Emancipation for
managing software applications [Software 96]. DISCOVER is a good example of a new
generation of reverse engineering environments. Central to its use and philosophy is a
repository, called the Information Model (IM), which contains complete dependency
information about the entire subject system. Creation of the IM is guided by a description of
the mappings between the logical and physical structure of the subject system. It is initially
populated by parsing the source code (DISCOVER supports both C and C++) and is
incrementally updated from then on.

There are five major application sets in DISCOVER that make use of the IM. Each
application set is composed of a series of modules that address one or more development
tasks. Of the five, DEVELOP/set is the one most geared towards program understanding.
Parts of REENGINEER/set are also applicable to program understanding tasks. However,
DEVELOP/set was the focus of this study.

2.1 DEVELOP/set

DEVELOP/set is a group of applications used for typical software development activities. It
is the application set most targeted to supporting program understanding. DEVELOP/set
consists of four modules: PROGRAM/sw, DESIGN/sw, DEBUG/sw, and DEBUG+/sw.

2.1.1 PROGRAM/sw

Of the four modules in DEVELOP/set, PROGRAM/sw is the module most directly aimed at
aiding program understanding. It provides two tools, the Browser and the Viewer, which are
the primary user interfaces of DISCOVER. The Browser serves as the navigation tool, while
the Viewer serves as the main presentation tool. The Viewer is used to display source code
(and associated artifacts) in a textual or graphical manner. PROGRAM/sw also provides
tools for "what if change and impact analysis, and for automatically propagating desired
changes throughout the subject system. The Impact Analysis tool reports on the system-
wide impact of any proposed change before the change is submitted. The Change
Propagation tool checks out affected files from the existing configuration management (CM)
system and implements the approved change. These tools are discussed in more detail in

Section 3.3.

2.1.2 DESIGN/sw

The DESIGN/sw module expands the functionality of the Viewer by providing the ability to
create and modify graphical views, such as subsystem diagrams, flow charts, and class

CMU/SEI-97-TR-012

inheritance diagrams. Enhanced source code editing is also provided through syntax-
directed versions of the Emacs and vi editors. Modification of any of the diagrams supported
by DESIGN/sw results in automatic modification (or incremental generation) of the
associated source code to reflect the changes. DESIGN/sw also supports forward
engineering by providing a facility for the creation of standard code fragments based on

user-specified templates.

2.1.3 DEBUG/sw

DEBUG/sw is an integrated interface to industry-standard debuggers, such as gdb and dbx.
Debugging commands are entered using a graphical or command-line interface, translated,
and passed on to the underlying debugger. DEBUG/sw also provides a macro language for
writing debugging scripts. The language supports multi-line macros that accept passed-
through arguments, evaluate expressions, and use conditional statements. The macros are
stored as files, so custom libraries of debugging procedures can be developed.

2.1.4 DEBUG+/SW

DEBUG+/sw enhances DEBUG/sw through support of mixed-mode debugging. The
interpreter allows one to isolate the function to be interpreted and run it within a compiled
executable. The resulting "on the fly" debugging of interpreted and compiled code
eliminates the need to recompile and re-link, thus reducing cycle time. This functionality is
provided using the industry-standard debuggers supported by DEBUG/sw and special
libraries, supplied as part of the module, that are linked into the application program.

2.2 CM/set

CM/set provides configuration management support by integrating with standard CM
systems such as RCS and SCCS. This approach means that existing CM systems can be
leveraged, and users need not learn a new CM system. CM/set provides an interface to the
underlying system similar to the manner in which DEBUG/sw provides an interface to
underlying debugging systems.

2.3 REENGINEER/set

Although part of REENGINEER/set can be used for aiding program understanding, it is
geared more towards altering the subject system through transformations. The
REENGINEER/set applications restructure monolithic applications into separate modules, or
into components that incorporate a subset of the functionality of the original software.
REENGINEER/set consists of four modules: EXTRACT/sw, PACKAGE/sw, PARTITION/sw,
and SIMPLIFY.H/sw.

CMU/SEI-97-TR-012

The EXTRACT/sw module extracts logical subsystems from a subject system. The IM is
used to analyze the system's source code and subdivide it into a series of subsystems that
graphically depict the logical partitioning of the system's functionality. A "dead code"
subsystem can be identified through dormant code analysis.

PACKAGE/sw subdivides a subject system into logical components based on the dynamic
relationships of the functions and data in the program. This module can be used to generate
functional subsets of an existing application, to identify and modularize library code, or to
break an application into segments before reengineering it using a different paradigm.

PARTITION/sw is a module for restructuring a subject system. Source code can be
physically rearranged into a new structure that more accurately reflects its logical structure,
as identified using the EXTRACT/sw module. Such restructuring can often make
maintenance easier and can facilitate program understanding by reducing the code clutter.

The SIMPLIFY.H/sw module is used to restructure a subject system's header files. It uses
the IM to reduce to a minimum the number of header files included in source files. This
results in fewer recompilations after changes are made to interfaces defined in header files.

2.4 DOC/set

DOC/set is used to maintain consistency between source code and documentation. It
consists of DOC/sw.FRAME and REPORT/sw.

DOC/sw.FRAME is used to establish associations between source code and Adobe
FrameMaker documents. The associations are represented as links that facilitate navigation
between related elements. The PROGRAM/sw module uses these links when performing
Impact Analysis and Change Propagation operations. After a link is established, it is treated
in much the same way as a relationship between source code artifacts. The difference is
that relationships between source code artifacts are discovered automatically during parsing
and model building, while relationships between source code and documentation must be

manually created.

The REPORT/sw module generates system-wide documentation that represents the system
as it currently exists, reporting what it contains and how entities are related. Links are
automatically created between source code and the generated documentation. These links
are used in the same way as those in DOC/sw.FRAME.

2.5 ADMIN/set

ADMIN/set provides system administration facilities for setup, maintenance, and usage of
DISCOVER. It currently consists of just the ADMIN/sw module. ADMIN/sw provides facilities
for managing the Project Definition Files discussed in Section 3.2.

CMU/SEI-97-TR-012

CMU/SEI-97-TR-012

3 Canonical Activity Support
As discussed above, a key component of the program understanding framework is the set
of canonical activities that are characteristic of any reverse engineering exercise. This
section describes how DISCOVER provides support for these activities.

3.1 Data Gathering

To identify the artifacts and relationships of a system and use them to later construct and
explore higher-level abstractions, raw data about the system must be gathered. Hence, data
gathering is an essential reverse engineering activity. It is usually, but not always, the first
step. The raw data is used to identify a system's artifacts and relationships; without it,
higher-level abstractions cannot be constructed and explored. Techniques used for data
gathering include static source code analysis (such as parsing), dynamic analysis (such as

profiling), and informal extraction (such as interviewing).

DISCOVER provides data gathering capabilities through the use of the underlying Gnu
compilation system from the Free Software Foundation. It supports both C and C++.
Parsing source code is the primary means of populating the IM. The static data gathered is
extensive and detailed: both inter- and intra-module dependencies are extracted. This aids
coarse-grained program understanding at the structural level as well as fine-grained

understanding at the algorithmic and data structure level.

DISCOVER also uses information produced by other tools, such as Pure Atria's Quantify, as
data to support dynamic analysis and interpretive debugging in the DEBUG/sw and

DEBUG+/sw modules.

Finally, data representing relationships not easily extractable from the source code, such as
a semantic dependency between software and its associated documentation (or vice-versa),
can be gathered from the user and represented as associations. This information is used in

the DOC/set application (as discussed in Section 2.4).

3.2 Knowledge Organization

For successful program understanding, data must be in a form that facilitates efficient
storage and retrieval, permits analysis of artifacts and relationships, and reflects the users'
perceptions of the system's characteristics. This form is usually based on a data model. A
data model enables one to understand the essential properties and relationships between
artifacts in a system. Without a model, raw data is almost impossible to understand.
Knowledge organization techniques are used to create, represent, and reason about data

models.

CMU/SEI-97-TR-012

DISCOVER relies on the IM to organize knowledge. The IM can be viewed as an
associative, consolidated, persistent repository that keeps track of every artifact related to
the software project, regardless of its size or apparent complexity, and every relation
between artifacts. The IM can reside on either a designated or virtual server. It is essentially
a distributed database that is used by all DISCOVER applications.

One or more Project Definition Files (PDF) guide the structure of the IM. A "project" in
DISCOVER parlance is a user-defined collection of files. It can mimic the current physical
directory structure, or it can impose a user-specified logical structure in its place. The PDF
specifies the mappings between the logical names of project components and their actual
physical locations in the underlying file system. A PDF can be somewhat complex to create,
but it does provide a sophisticated mechanism for abstracting away from the structure of the
file system (which can become quite complicated and "dirty" over time) to a more logical

view of the application.

Two types of binary files physically represent the IM: (usually) one "pmod" file that contains
information relevant to every file in a project, and one or more "psef files that contain
information relevant to a specific file in a project. The pmod file is stored at the top-level
directory for the project. It contains project-wide entity-relation cross-reference information,
which permits rapid access to coarse-grained relations. The pset files contain file-specific
information and are (by default) stored in the same directory as the source code. For
example, for a source code file foo.c, there would be a file called foo.c.pset containing
complete parse details about the contents of foo.c. It will also contain cross-reference
information about the file's relation to other files. In essence, pmod files are used to capture
information about global entities in the subject system (such as functions or classes), while
pset files are used to capture information about entities whose scope is not global (such as
automatic variables).

Parsing the subject system's source code initially populates the IM, resulting in a complete
and very detailed representation of the system's structure. After changes are made to the
system, the IM can be regenerated from scratch or incrementally updated. DISCOVER is
able to adjust the contents of the model to reflect modifications made during development.
Incremental updating of the model works whether the code is modified using one of
DISCOVER's toolsets or not. For a multi-user environment, DISCOVER separates the
shared area (code visible to an entire team) and an individual's private work area.

3.3 Information Exploration

Information exploration is a composite activity of navigation, analysis, and presentation.
Because the majority of program understanding takes place during information exploration,
it is perhaps the most important of the three canonical reverse engineering activities. Data
gathering is required to begin the reverse engineering process, and knowledge organization
is needed to structure the data into a conceptual model of the application domain and
subject system. But the key to increased comprehension is exploration that facilitates the

CMU/SEI-97-TR-012

iterative refinement of hypotheses. Exploration includes navigating through the web that
represents the information related to the subject system, analyzing and filtering this
information with respect to domain-specific criteria, and using presentation mechanisms to

clarify the resultant information.

3.3.1 Navigation

Large software systems, like other complex systems, are non-linear and may be viewed as
consisting of an interwoven and multidimensional web of information artifacts. The web's
links establish relationships between the artifacts. These relationships can be component
hierarchies, inheritances, data and control flow, and other relationships generated as part of
the reverse engineering and software development processes. Navigation allows software
engineers to traverse this "information web" as part of their exploratory understanding

activities.

The information navigation activity can itself be subdivided into selection, editing, and
traversal. Selection is one of the most important of all canonical activities. It is related to the
essence of program understanding: identifying artifacts and understanding their
relationships. This is essentially a pattern matching activity at various abstraction levels.
Identifying artifacts involves finding artifacts of interest in the subject system or in the
database used to represent the system. It requires a query mechanism that enables users
to specify attribute patterns that are used to identify artifacts in the database that satisfy the
search criteria. The type of pattern recognition provided can range from recognition of
simple regular expressions, such as that provided by the Unix grep tool, to more advanced
capabilities such as plan recognition.

Editing is an activity that can alter the knowledge organization structure, sometimes as a by-
product of information navigation. For example, through editing activities a user may create
user-specified subsystem constructs that are logical (but not physical) representations of
the system. Traversal is the action of moving from one artifact to another in the information
space. For example, following links that represent relations such as "calls" involves
traversal.

Two tools from the PROGRAM/sw module provide the primary means of navigation in
DISCOVER: the Browser (also known as the Project Browser) and the Viewer. The Browser
operates in two modes: Browse and Scan. In Browse mode, information is displayed as it
exists in the underlying physical directory structure; the PDF is used to filter out non-project
files. In Scan mode, information is displayed as it exists in the IM. Figure 1 on page 12
illustrates the Browser operating in Scan mode.

The Browser is structured as a table with four resizable columns: Categories, Elements,
Ask, and Results. In Scan mode, the Categories column represents different types of
entities in the IM; it does not change. The Elements column is dynamically updated to
contain instances of the selected Categories. The Ask column contains queries the user can

CMU/SEI-97-TR-012

launch concerning the selected Elements. This is the primary means of selecting artifacts in
the IM. The queries are extensive but fixed. They permit the user to see where entities are
defined, used, included, and so on. However, because they do not change, some queries
do not make sense for certain entities. For example, asking for "Show Friends" to display
the friend functions of a C++ method does not make sense if the element selected is not a

C++ class.

The Results column contains entities from the IM that satisfy the query. They may be
clustered into logical entities called "Groups," which can be used as first-class entities in
subsequent queries or analyses. In this manner the user can edit the IM to construct logical
groupings of entities that are not necessarily reflected in the physical structure of the
subject system. Pattern matching filters are available to refine the queries. A Query tool is
also available for context-sensitive and attribute-based searches. For example, the user can
search for all files with a specified creation date. At any time the user can select one or
more entities displayed in the Browser and graphically view their relationships to other
entities using the Viewer. Users can traverse the implicit links between the entities in the
Results column and the associated source code if the entity represents a file.

As discussed below, the Viewer is primarily used for information presentation. However, it
also supports information navigation through its tight integration with the Browser. While the
Browser is used to navigate through the entire project, the Viewer can be used to navigate
in a single source file. The Viewer comes equipped with enhanced versions of the Emacs
and vi editors that provide hyperlinks between source code files and associated
documentation. The Decorated Source option highlights syntactic entities in the viewer,
such as macros and keywords. It also provides a mini-Browser of its own for rapid

navigation.

3.3.2 Analysis

The critical step that derives abstractions from the raw data is analysis. Software engineers
use the resultant information to further understand the system. There are many forms of
analysis possible, such as computing metrics or slicing. The type of analysis supported is
closely related to the abstraction level provided by the pattern recognition capabilities of the
tool. Program understanding techniques can consider source code in increasingly abstract
forms: raw text, preprocessed text, lexical tokens, syntax trees, control and data flow
graphs, program plans, architectural descriptions, and conceptual models. The more
abstract forms entail additional syntactic and semantic analysis that corresponds more to
the meaning and behavior of the code and less to its form and structure. Different levels of
analysis are necessary for different users and different reverse engineering activities.

Many of DISCOVER's information analysis capabilities are provided by PROGRAM/sw's
Impact Analysis and Change Propagation tools, and by the DEBUG/sw and DEBUG+/sw
modules. As mentioned in Section 2.1, the debugging tools provide a common interface to

10 CMU/SEI-97-TR-012

the underlying debugger. Mixed-mode execution of interpreted and compiled code enables

considerable runtime analysis to be performed quickly and easily.

Impact Analysis analyzes the impact of a proposed change throughout the entire project.
This type of analysis can significantly reduce the number of errors introduced by incomplete
or erroneous changes. If the scope of the changes is acceptable, the Change Propagation
tool can be used to automatically implement the change throughout the entire system. The
types of changes that can be automated in this fashion include changing the name of a
variable and adding new parameters to a function. Affected files are checked out of the

underlying CM system as needed.

The change management process relies on two types of relations: Hard Associations and
Soft Associations. Hard Associations are those that are automatically gathered by
DISCOVER from the source code and maintained in the IM. Soft Associations are those
that are manually entered by the user, for example using DOC/set, and from there after are
tracked in the IM. Soft Associations are used to maintain semantic dependencies between

entities such as source code and related documentation.

The Group entity makes it possible to quickly carry out other common analysis operations,
such as locating all functions referenced but not defined in the project. This is done by first
creating a Group representing all functions defined in the project, as selected in a few
mouse clicks in the Browser. A second Group is created that represents all functions
referenced in the project. A set difference operation is then used to identify the resulting
collection of undefined functions. Such functions are often library routines and may be of

concern when porting the subject system.

The pattern matching capabilities of DISCOVER are primarily geared towards program
analysis, where the abstraction level is at the syntactic programming language level and
source-code tokens, such as keywords and identifiers, are the artifacts manipulated.

CMU/SEI-97-TR-012
11

' Browser File Manage View Utility 3
Project

Nr Browse ■■*■ Scan

Categories

Up

Files
Functions

Classes
Structures
Unions
Enu»s •
Typedofs :<

Hacros '•'■".
Templates
Groups/Subsy$
Relations
Associations
Link Types

1 Errors

1 of IS

Group

. Bements

ftttrDescription
Cnwflctions v ./'.
CnvNotifrftesponca
CnvPronptfictiorflag' i
CnvProaptteiionTable
CnvPronptSelect
CnvPronptStrins •
CnvPrbaptUid9etText:

Comands ,;

CbwandsSize . .
EdltRectMl
Gods

Reset _f dOSUTB

Ask Results

Uhere Referenced
Files Uhere Included
there Used
Uses
Uses Functions
Uses Data Heabers ;
Uses Variables
Uses Classes
Uses Structures
Uses Unions
Uses Enuns
Uses T;fl>edeFs
Uses Hacros

mi
rrrrrr—Si m

i;»l=Öf247i:: iJ ill Hi]]

±^/xf ire/serwerf'spel Luti 1 .c

lof« -:ü:of:j;= Ji
*—: — *-,—* r».^, „.„..■ ^ „:.;;;;;::;;;; ;,::;—

I Choose fitters for selected Items in Bements and Results columns. (Bements selections processed immediately; Results

Figure 1: DISCOVER Browser

3.3.3 Presentation

Because people often use visual metaphors for communicating and understanding
information, it is important to use flexible presentation mechanisms. Most reverse-
engineering systems, including DISCOVER, provide the user with fixed presentation
options, such as cross-reference graphs or module-structure charts. Even though the
producers of the system might consider fixed options to be adequate, there are always
users who want something else. Ideally, it should be possible to create multiple, perhaps
orthogonal, structures and to view them using a variety of mechanisms (for example,
different graph layouts provided by external toolkits).

In DISCOVER, information presentation is accomplished primarily using the Viewer. It
provides both textual and graphical representations of the subject system. Information
presented to the user is always up to date: The views are generated dynamically from the
IM. Textual views are provided using an enhanced version of the Emacs and vi editors. The
Viewer can display source code files in Outline mode and use elusion to hide details as
desired.

A considerable number of graphical views of entities and relations are available.
Subsystems, which are user-defined collections of entities, are treated as a special type of
Group. Subsystem diagrams show the relationship between these entities. Similar entity-
relation diagrams are available for other types of entities in the IM, such as classes. For
example, class inheritance diagrams provide a view of the inheritance hierarchy. For finer

12 CMU/SEI-97-TR-012

grained information, flow charts can be created to display the logic and control flow of

selected functions.

The diagrams are color-coded to indicate different types of relations. Icons are used to
represent the different types of entities in the IM. Visual cues are provided to indicate when
the current diagram is incomplete and that more information is available. This is an
important feature, as it ensures that the diagrams will not mislead the users into making
decisions based on what they perceive as complete information.

CMU/SEI-97-TR-012 13

14 CMU/SEI-97-TR-012

4 Quality Attributes
Part of the program understanding framework is a descriptive model that characterizes a
reverse engineering support mechanism based on a hierarchy of attributes. A quality
attribute is defined by Barbacci, et al., as a system requirement that is essentially non-
functional in nature [Barbacci 95]. Examples of quality attributes include dependability,
extensibility, and usability. This section briefly describes selected quality attributes of

DISCOVER that were found to be of particular importance.

4.1 Applicability

This quality attribute is related to the domain in which the tool is applicable. In this case, the
word "domain" is over-burdened. It can refer to application domain, implementation domain,

and issues of scale.

DISCOVER currently supports C and C++. There is no implicit limitation on the type of
application for which DISCOVER is appropriate. The IM is two-tiered (global "pmod" files
and local "psef files) and distributed, which helps make it scalable. It has been used on
systems with millions of lines of C/C++ code. In many ways, DISCOVER is best suited to
large projects. The benefits that accrue from using a large-scale centralized repository really
only make themselves felt when the size of the subject system goes beyond that which a

small team can keep track of manually.

4.2 Extensibility

DISCOVER is essentially a closed system. The IM is proprietary and no published API is
available to the average user, although point integration is possible (such as that provided
with FrameMaker). There is no scripting interface that would enable end-user programming

of its modules.

The suite of tools DISCOVER provides is extensive, but fixed. The queries available in the
Browser cover most of the likely questions a C or C++ programmer would ask, but there is

no way to extend this set.

DISCOVER supports varying degrees of automation. For example, Groups can be
constructed manually, subsystems can be extracted semi-automatically (guided by
parameters set by the user), and header files can be simplified automatically.

4.3 Miscellaneous

DISCOVER currently runs on the Solaris and HP-UX operating systems. It takes
approximately 85M of disk space for a typical installation. To process upwards of 300K

CMU7SEI-97-TR-012 15

LOC, 64M of main memory and 140M of both temp and swap space are recommended.
There are no external requirements for third-party software. DISCOVER is written in C++
and is developed and maintained using itself; this is an important testament to its
usefulness.

16 CMU/SEI-97-TR-012

5 Discussion
This look at the capabilities of DISCOVER, as viewed through the lens of the program
understanding framework, has raised many issues about reverse engineering environments
that support program understanding. This section discusses some of the implications of this
work on users of such support mechanisms, on the program understanding research
community and tool developers, and on the evolution of the program understanding

framework itself.

5.1 Implications for Users

The report Coming Attractions in Program Understanding identifies emerging technologies
in program understanding that may have significant impact on advanced practitioners in the
next five years [Tilley 96b]. Of the three areas discussed in that report, the section on
development of support mechanisms is the most relevant for this discussion of
DISCOVER's capabilities. In particular, DISCOVER currently provides at least partial
support for at least five of the emerging technologies, only two of which were expected to

appear in 1997. They are

1. Leveraging mature technology: Existing compilers are tailored for use in data

gathering.

2. Data filtering: Several techniques for filtering information are provided.

3. Advanced modeling techniques: Groups and the IM provide a logical view of the

subject system.

4. Scalable knowledge bases: The IM can handle upwards of one million lines of code.

5. Automation levels: The user can select manual, semi-automatic, or automatic

operations in some instances.

It is clear that many of DISCOVER's advances are in the area of knowledge organization,

which is not surprising given its emphasis on the IM.

The implication for advanced practitioners is that advanced commercial environments like
DISCOVER provide a production-quality amalgam of several recent research efforts into
reverse engineering environments. DISCOVER is scalable (able to process very large
source files), robust (able to process industrial code), and relatively easy to use. The
notable exception to the latter quality attribute (usability) is in the initial creation of the IM.
This step requires considerable domain knowledge and intimate familiarity with the system
environment in which DISCOVER is deployed. Model creation has proven to be somewhat
challenging in a few instances where DISCOVER was introduced into a real-world

environment.

CMU/SEI-97-TR-012 17

There are a few areas where DISCOVER does not yet provide some of the desired
capabilities outlined in the report. Perhaps the most important is end user programmability.
As discussed above, there is currently no way for a user to write scripts to tie some of the
DISCOVER tools together. This limits the capability of DISCOVER by forcing the user to
redo tasks, such as creation of and operation on Groups, that could be automated in some
instances. The other important limitation related to this is the closed nature of the IM; third-
party tools cannot yet be integrated into the DISCOVER toolset by the end user. This limits
the capability of DISCOVER by not allowing users to run tools, such as those that calculate

site-specific metrics, using applications they may already have in-house.

5.2 Implications for Researchers and Tool Developers

The emergence of commercial tools such as DISCOVER has implications for researchers
and tool developers working in program understanding. Research tools should "push the
envelope" in some way, advancing the state of the art beyond the current state of the
practice. This means that any new tools proposed by the research community must
necessarily provide capabilities not found in commercial offerings. Since DISCOVER
provides such a rich feature set, it has raised the bar of what should be considered de facto

tools in a reverse engineering environment.

However, as discussed in the previous section, there are still many avenues of exploration
that would benefit from more attention by researchers. One of the most promising areas is
information navigation and presentation. When DISCOVER is used on very large systems,
the issue of scale becomes very important. Visualization techniques are needed to sort and

filter information.

Web-based interfaces would go a long way towards making the capabilities of tools like
DISCOVER available to a wider group of users. The application domain in which developers
work is changing rapidly, from traditional monolithic programs to client-server to three-tiered
net-centric applications that rely on distributed object technology. A tool such as DISCOVER
can be used on this type of application, but much more work is needed in this area.

There is another issue that arose from the study of DISCOVER that is applicable to all
researchers: deployment. The issue of successfully deploying a commercial tool in an
industrial setting is not new. Researchers in the CASE tool community have been struggling
with the adoption issue for a long time. New technology is only successful if it easily
integrates with existing tools and processes. Forcing users to adopt radically different ways
of doing their jobs rarely succeeds. It is unfortunate that many developers will only give a
tool a short window of opportunity to succeed. If they cannot get the tool up and running in
ten minutes and see real results, without looking at the manual, they will often abandon the
tool. For tools as complex as DISCOVER this is a very real concern. It means the potential
benefits of using the tool may not be realized. Perhaps one way of addressing this problem
is by promoting the capabilities of such support mechanisms as services rather than tools.
Another way may be to incorporate more automated support for initial setup and integration

18 CMU/SEI-97-TR-012

with the target environment. Automatic "wizards" such as those found in popular PC office
software might be used to provide more hands-on guidance when domain experts are not
available. The crux of the matter, from a researcher's point of view, is that no matter how
powerful the tool or technique advocated, it will not be successful until it is merged into the

normal activities of the users.

5.3 Implications for the Program Understanding Framework

The underlying cognitive aspects of program understanding remain fundamental to research
into reverse engineering. However, for comparing individual support mechanisms, this part
of the framework was de-emphasized in this study. There is, however, an opportunity for
further investigation into the link between cognitive models and the types of processes a
reverse engineering tool supports, or even mandates. Storey reports about some initial work

in this area [Storey 97].

In evaluating the utility of the program understanding framework for classifying reverse
engineering tools, several questions must be addressed. Did the investigation into the tool's
capabilities reveal any fundamental flaws in the framework? Is it complete? That is, are
there features offered by the tool that could not be mapped into the canonical activities
and/or quality attributes sections of the framework? Conversely, are there areas of support
described in the framework that do not seem readily available in the tool in question?
Finally, how easy was it to use the framework to classify the capabilities of the tool?

In this instance, DISCOVER proved to be a very useful case study. There were not really
any capabilities that DISCOVER offered that could not be fit into the program understanding
framework—at least none of DISCOVER's modules that are geared towards program
understanding. DISCOVER provides a richer set of features than just program
understanding aids, such as tools for reengineering and document management, that were
outside the scope of this study because they are not covered by the program understanding
framework. Most of the categories in the framework were applicable to DISCOVER. The
mapping of tool features to canonical activities and quality attributes was relatively easy to
do. Nonetheless, based on this study of DISCOVER (and of other tools), the structure of the
program understanding framework has changed.

The section on quality attributes evolved from what was originally a descriptive model of the
characteristics of reverse engineering environments. This change made the description of
some of the capabilities investigated, such as information analysis, easier to provide under
the canonical activities rubric. There is still a need for a scenario-driven version of the
framework that is more geared towards typical user maintenance tasks. For example, a
high-level scenario of "porting" could be refined into maintenance tasks, such as "identify
external library dependencies." Each such task is composed of one or more of the canonical
activities described in Section 3. This enhancement of the framework would make it more
amenable to users, as opposed to researchers.

CMU/SEI-97-TR-012 19

Some of the canonical activities and quality attributes will be explored in more detail for the
next study. For example, the analysis of DISCOVER's information presentation system gave
some impetus to taking this part of the framework down a few levels of detail. This would
aid the discussion of the importance of visual cues and different types of diagram
techniques. Other quality attributes, such as usability and ease of deployment, are also
candidates for further examination.

More investigations of other popular reverse engineering systems, guided by the evolving
program understanding framework, are currently underway. This includes both research
prototypes and commercial offerings. In addition, two "baseline" environments are being
investigated: the traditional Unix environment and its generic toolset, and a newer type of
environment exemplified by tools such as Microsoft's Visual Studio [Microsoft 97]. The latter
will be used as the basis for an investigation into leveraging HTML and the Web as the
infrastructure for a new class of reengineering tools [Tilley 97].

5.4 Acknowledgements

Software Emancipation was kind enough to provide an evaluation copy of DISCOVER and
initial training in its use. Without their help, this work could not have taken place.
Discussions with Brian Gill-Price of proServices were invaluable in learning about
experiences deploying DISCOVER in real-world settings. Ed Morris and Dennis Smith of the
Software Engineering Institute provided valuable comments on early drafts of this paper. .

20 CMU/SEI-97-TR-012

References

[Barbacci 95]

[Microsoft 97]

[Software 96]

[Storey 97]

[Tilley 96a]

[Tilley 96b]

[Tilley 97]

Barbacci, M.; Klein, M. H.; Longstaff, T. H.; & Weinstock, C. B. Quality
Attributes (CMU/SEI-95-TR-021). Pittsburgh, PA: Software Engineering

Institute, Carnegie Mellon University, 1995.

Microsoft. Visual Studio [online]. Available WWW
<URL: http://www.microsoft.com/vstudio/> (1997).

Software Emancipation. The DISCOVER Development Information
System (Version 4.0) [online]. Available WWW
<-\ IRI • http-//www.setech.com> (1996).

Storey, M. A.; Wong, K.; & Müller, H.A. "How Do Program
Understanding Tools Affect How Programmers Understand Programs?"
pages 12-21. Proceedings of the 4th Working Conference on Reverse
Engineering (WCRE '97). Amsterdam, The Netherlands, October 6-8,
1997. Los Alamitos, CA: IEEE Computer Society Press, 1997.

Tilley, S. R.; Paul, S.; & Smith, D. B. 'Towards a Framework for
Program Understanding," pages 19-28. Proceedings of the 4,h

Workshop on Program Comprehension (WPC '96). Berlin, Germany,
March 29-31, 1996. Los Alamitos, CA: IEEE Computer Society Press,

1996.

Tilley, S. R. & Smith, D. B. Coming Attractions in Program
Understanding (CMU/SEI-96-TR-019) Pittsburgh, PA: Software
Engineering Institute, Carnegie Mellon University, 1996.

Tilley, S. R. & Smith, D. B. "On Using the Web as Infrastructure for
Reengineering," pages 170-173. Proceedings of the &h International
Workshop on Program Comprehension (IWPC '97). Dearborn, Ml, May
28-30,1997. Los Alamitos, CA: IEEE Computer Society Press, 1997.

CMU/SEI-97-TR-012 21

22 CMU/SEI-97-TR-012

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 0704-0188

Publ* reporting burden for this collection of information is estimated to average 1 hour per response, including the time for rev,ew,ng ,nstruct,ons. search.nge« t ng ^^^^"^
maMainTg the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of th,sxolecfco> of •*""«»- »***
^esS Vor reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson Dav.s H,ghway, Surte 1204. Arlington, VA 22202-4302,
and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503. „,„,„„,
 " •- *» REPORTTYPE AND DATES COVERED

Final
1. AGENCY USE ONLY (LEAVE BLANK) 2. REPORT DATE

October 1997

4. TITLE AND SUBTITLE

Discovering DISCOVER

AUTHOR(S)

Scott R. Tiliey

PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

11.

SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

HQ ESC/AXS
5 Eglin Street
Hanscom AFB, MA 01731 -2116
SUPPLEMENTARY NOTES

FUNDING NUMBERS

C —F19628-95-C-0003

PERFORMING ORGANIZATION

REPORT NUMBER

CMU/SEI-97-TR-012

10. SPONSORING/MONITORING

AGENCY REPORT NUMBER

ESC-TR-97-012

12.A DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified/Unlimited, DTIC, NTIS
13. ABSTRACT (MAXIMUM 200 WORDS)

12.B DISTRIBUTION CODE

This report describes investigations into DISCOVER, a modern software development and maintenance environment.
The study is guided by a framework for classifying program understanding tools that is based on a description of the
canonical activities that are characteristic of the reverse engineering process. Implications of this work for advanced
practitioners, researchers and tool developers, and the framework itself are discussed.

14. SUBJECT TERMS

DISCOVER, framework, program understanding, reverse engineering

17. SECURITY CLASSIFICATION

OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION

OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION

OF ABSTRACT

UNCLASSIFIED

15. NUMBER OF PAGES

22

16. PRICE CODE

20. LIMITATION OF ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
298-102

